BIOLOGICAL AND MOLECULAR BASIS OF IMPLANT TECHNOLOGY

Julio C Palmaz The University of Texas, San Antonio

Disclosures: Palmaz Scientific, Co

Vascular materials biocompatibility testing Endothelial cell migration: Healing Fibrinogen adsorption Thromboinflammatory Platelet adherence Monocyte adherence

Material	Mean Thrombo-	EC migration	Overall score
Stainless Steel		4	7.33
Corethane	3.00	3	6.00
Elgiloy	3.00	3	6.00
Tantalum	3.00	3	6.00
Nitinol	3.00	3	6.00
Titanium	2.67	3	5.67
L605	2.33	3	5.33
Pellethane	3.00	2	5.00
Nickel	3.00	2	5.00
Molybdenum	1.67	3	4.67
Silathane	3.33	1	4.33
PolyHEMA	4.00	0	4.00
PTFE	4.00	0	4.00
Silicon Carbide	2.00	2	4.00
Gold	2.00	2	4.00
Polyester	2.00	2	4.00
Chromium	1.67	2	3.67
PDMS	3.67	0	3.67
Cobalt	2.00	1	3.00
Iron	2.00	1	3.00
Diamond-like Carbon	1.33	1	2.33
Manganese	1.00	0	1.00
Turbostratic Carbon	1.00	0	1.00

Comparison of new and old vascular materials:

 New materials equivalent to traditional ones

 No material with outstanding properties at present

Implantable vascular prosthetics

Choices of materials by convenience

Surgical prosthetic polymers

Metals for intravascular stents

Drugs for delivery systems

Designing for a targeted effect

Potent Specific Selective Difficult and expensive Designing a nanomolecular smart surface

Starts by understanding the target malecule

Fibrinogen ligand sites

Fibrinogen molecular conformation and ligand exposure

Nano-engineering basis for promoting capture of adhesive protein

Engineered surfaces Stainless steel dots on hydrated silicon

50X50um

25X25μm

15X15μm

 $5X5 \,\mu$ m

Chromium scan

Epi-illumination microscopy

Cell area is inversely related to dot area

50X50um

15X15μm

Microtexturing of blood contact surfaces for accelerated endothelialization

EC coverage under static conditions

Endothelialization speed on plain and grooved stents

EC Coverage on Stent Surfaces

Conclusions

Future innovations in vascular devices will be in surface science.

Nanotechnology will have a central role